
The Birth of Xiis — A Guide on Font Creation
by George Marques

1. Introduction
When I decided to make my own writing system (or a  conscript,  for short),  I  couldn’t tell how 

difficult it would be to actually develop a computer font for it. If I was designing a standard alphabet,  
none of these troubles would happen to me, but, inspired by Hangul, I followed a different path.

So, to help other people that might try to create similar systems, I’ll try to describe my journey in  
this endeavor.

This is not a tutorial, I would say, because it’s not (much) a step-by-step directions. It is a guide that  
will explain the general process I used to create Xiis and what each function do (specially about lookup 
tables, something I really suffered to understand how they work). It actually became longer than I 
originally intended, but I believe it has the right amount of detail.

To  view the  description  of  Xiis,  itself,  along  with  a  link  to  the  generated  font  file,  check  the 
document at http://georgemarques.com.br/xiis.pdf.

2. Software
I used basically two programs to create the font for Xiis:  Inkscape, a vector graphics editor, and 

FontForge, an outline font editor. Both are free open source programs, so you only have to spend your 
internet connection to download them. The only caveat is that FontForge is a usually pain to install 
under Windows, though there is unofficial pre-built installer packages to install it on that platform. One 
of such packages can be found at http://www.mpetroff.net/software/fontforge-windows/.

There’s also Graphite, a scripting language to help creating complex features in fonts. Even as sort 
of “programming language”, I found it easier to understand than the OpenType lookup tables, but it 
does have some bugs that annoyed me. I’ll tell about this approach later.

3. Designing Glyphs
A glyph is “an image, often associated with one or several characters” according to the FontForge 

glossary. The first step is to design such images that will compose your font. About how to do this, 
there’s  many information  on the  internet  easily  accessible.  You can  even  use  FontStruct to  do  it, 
depending of how simple are the glyphs. In my case I used Inkscape. As it works directly with SVG (a 
vector graphics image format) and FontForge can import them directly too, it’s a natural process.

http://georgemarques.com.br/
http://fontstruct.com/
http://fontforge.org/GlossaryFS.html
http://fontforge.org/GlossaryFS.html
http://scripts.sil.org/cms/scripts/page.php?site_id=projects&item_id=graphite_home
http://www.mpetroff.net/software/fontforge-windows/
http://fontforge.org/
http://inkscape.org/
http://georgemarques.com.br/xiis.pdf


My recommendation is to create an image of 1000×1000 pixels 
(or 1024×1024 if you intend to create a TrueType font, as it requires 
the height to be a power of two, though FontForge is able to re-scale 
it if you want). The width is not really important, because it’s defined 
per glyph, but the height is defined for the font (unless you have a 
vertical  system,  then  switch  “width”  and  “height”  in  this  paper). 
Create a base file with all the guides, specially the baseline, and use 
it as a start. Save each glyph as separate file.

When finished a glyph, select all the pieces, do an Invert Selection 
command and delete. This assures nothing extra is hanging around. 
Then, select the tool Edit paths by nodes (F2), hold shift and click on 
every piece until all is selected. Then click on Path > Union in menu bar to make it all a single path. 
FontForge requires that only a single path exists.

4. Importing Glyphs

4.1. Create a new font
Open FontForge and create a new file. It’ll show a bunch of rectangles with red Xs and characters on 

top of them. The  Xs are where your glyphs will be and the characters are a reference to know the 
correct encoding.

You also have to set the baseline of the font. The baseline is the horizontal line in which letters sit. 
Everything below the baseline is a descender, like the stem of the letter p. In Xiis, all final consonants 
are drawn below the baseline.

To set that, go to Element > Font Info (Ctrl+Shift+F) > General. There you can set the Ascent (the 
size  above  the  baseline)  and  the  Descent (the  size  below  the  baseline).  The  Em  Size change 
automatically to reflect the sum of the two and that should be the same height of your SVG files, to 
ensure the glyphs will be in the same position when importing.

In the Font Info dialog, under the PS Names section, you can set the name of your font and also add 
a copyright notice.

4.2. About encoding and character sets
A character set is, well, a set of characters. The encoding is what tell which bytes represents each 

character of a set. Unicode is an example of a character set, as a collection of characters and a standard 
numeric order for them. In order for the computer to understand which character to use, an encoding is 
necessary, such as UTF-8, which maps a byte (or a sequence of bytes) to the numeric order in the set.

Every character in a set must have a numeric id, but the encoding doesn’t really need to map all of 
the characters. For example, a long s might be used when an s occurs in initial or medial position, but it 

Picture 1: The design for 
short i in Inkscape.



doesn’t have to be mapped to any byte, as it’ll use the same as  s does. To the computer, they’re the 
same, just the representation is different.

So, when creating variations of characters, you don’t have to specify the encoding for all of them, 
just for the base form.

For Xiis, I used some of very special characters of Unicode, like ṕ (p with acute) and ẽ (e with tilde), 
so  I  used  the  full  BMP (Basic  Multilingual  Plane).  To  do  that  in  FontForge,  click  on  the  menu 
Encoding > Reencode > ISO-10646-1 (Unicode,  BMP).  This  will  bring a  lot  of  characters  to  the 
FontForge screen. For easier navigation, the View > Goto (Ctrl+Shift+>) command can be used.

4.3. Importing glyphs
Now you have to import the glyphs under the character you want to use when typing. Just the base  

forms should be imported this way, as alternative forms don’t need to have an encoding. In the case of 
Xiis,  those  are  the  initial  consonants,  the  vowels  in  their  standard  position,  the  numbers,  and the 
punctuation marks.

If you double click in any red  X, it opens the  Glyph 
Edit window.  FontForge  provides  tools  to  design  the 
glyphs inside it, but I find Inkscape much more powerful 
and  friendly.  To  import  a  file,  go  to  File  >  Import 
(Ctrl+Shift+I). Select the format as SVG and find the file 
with the corresponding glyph.

If  you  set  the  Em Size correctly,  the  glyph  should 
already be  in  the  right  position.  If  not,  select  all  and 
move it around. The keyboard arrow keys can be used to 
move pixel by pixel. With <Alt> pressed, it moves in ten 
pixels per step.

After adding all the base forms, click on Encoding > 
Compact. This will make only the non-empty characters 
appear. This make it easier to navigate, specially if you 
used  some  special  characters  far  in  the  list.  Just 
remember to uncheck it before exporting, or the encode 
will turn out messed up in the font. The other reason to 
compact is that the extra glyphs will be at the end of the 
list, which is very far if you’re using the BMP. Even though you can just press the <End> key to go the 
end, it's easier to have everything together instead of jumping around.

Now, you have to  rename your  glyphs to something meaningful.  These names are useful  when 
building the lookup tables later. You can use the standard names, which are already set, or change to 
something  more  specific.  To  do  that,  select  a  glyph  and  click  on  Element  >  Glyph Info 
(Ctrl+Alt+Shift+I). Go to the section Unicode and change (if you want) the Glyph Name field. You can 

Picture 2: The import dialog.



use the Prev and Next buttons to navigate between glyphs, just be sure to click OK after finish editing, 
because if you Cancel it, all the changes will be canceled, not just the current glyph.

For the alternative glyphs, you need to create new slots. Click on Encoding > Add Encoding Slots. 
Select the needed amount of slots and click OK. Then you can import the glyphs for alternative forms 
into the new slots.

4.3.1.Zero-width characters

What happens to  the vowels  in Xiis  is  that  they don’t  require  any special  feature to  be placed 
correctly. I just used an “evil” trick: zero-width characters.

I placed the vowels before the origin, just in their position inside a initial consonant. Then I moved 
the line at the end to the same point of the origin. It’s also possible to use the  Metrics > Set Width 
(Ctrl+Shift+L) command to do that. With zero-width, the cursor won’t move forward when typing this 
character. And since the glyph is before the start line, it’ll be drawn before the cursor.

If you use mark positioning (usually done with diacritics), you would also want to make them zero-
width, otherwise some unwanted extra space may be generated.

4.3.2.References

You may want to use the same glyph for the same character in a different position. It happens in 
Xiis, when you use two vowels in a syllable, as they change position but keep the same form. You can 
copy and paste and them just adjust the position of the alternative form, which is possible. However, if 
you want to change the form, you have to copy and paste and adjust everything again.

That’s when references come into play. Instead of copying a glyph, you can just copy a reference to 
it. Then if you change the original, all references will be updated.

To do that, click with the right button in the source glyph and click Copy Reference. Then you can 
paste it unto another and only the reference will be copied. You can notice that it’s not possible to edit 
the pasted reference, you can only change its position. Be aware, though, if you change the position of 
the original glyph, all references will reflect the relative movement.

4.3.3.About suffixes

When placing alternative forms of characters, you want them to have the same name as the base 
form, which makes sense. But the names must be unique. And that’s when suffixes made themselves 
useful. When you change the name of the new form, place the name of the character, add a dot (.) and  
then type a meaningful suffix.

Using the same suffix for multiple characters help automatizing the creation of substitution tables 
later, as FontForge can find all terms with a certain suffix. You can also chain the suffix, tough the 
software automation only happens with the last one.



In Xiis, I created variations with different position for when a vowel is the first in a syllable and 
when it is the second. Both are different from the base form, which is centralized. So I used the suffixes 
“first” and “second” for that. When I created the substitution table, I could load everything with the 
same suffix, which was very helpful, specially after I added new vowels. There’s also the half-box 
version of the initial consonants, all carrying the “half” suffix. As the finals are variations of the initials, 
they also have the same name, but with a “final” suffix.

5. Lookup Tables
This is the main engine that made Xiis font possible. A lookup table is a set of commands that 

informs the software rendering the font how to make the correct transformations. The tables have to be 
associated with features, which are standard identification for such transformations.

Those features are part of the OpenType standard, maintained by Microsoft and Adobe. Apple fonts 
work differently and follows another standard, though they are usually compatible with OpenType and 
FontForge knows how to deal with them, so it shouldn’t be a problem.

5.1. Features
In OpenType standard,  features are  identified with a four letter  code.  For example,  the  ligature 

feature (the one that joins certain combinations of characters like “fi”) is identified by “liga”. There are 
a great variety of features, though some only work with specific languages.

The trouble with features is that, as powerful as they could be, each software implements them 
differently. There’s no guarantee that they’ll work (or that they’ll work the right way). But that’s all we 
got, so we have to live with that.

Of course, Graphite is another possibility. However, even if it is more constant, it’s only supported 
by a handful of software applications. And, for my experience, you have to choose between Graphite 
and OpenType features, as they don’t work together.

For Xiis, I only used the Contextual Alternate (calt) feature, though I used it in multiple tables.

A list of all the features can be found at the OpenType specification. And there’s a great article about 
features that can be found at http://ilovetypography.com/OpenType/opentype-features.html.

5.2. Lookup tables
A lookup  table  is  actually  what  instructs  the  transformations.  There  are  two  types  of  them: 

substitution (GSUB) and positioning (GPOS).

The substitution table switches a glyph with another. It can also exchange many glyphs to just one, 
or one to multiple glyphs. A positioning table change the place of glyph based on a certain context 
(kerning is one example of that).

What it’s not immediately clear is that you can use many features with a certain table and sometimes 
you don’t need to specify a feature for such table as you’ll use somewhere else. For example, if you 

http://ilovetypography.com/OpenType/opentype-features.html
http://www.microsoft.com/typography/otspec/featurelist.htm


want to change a glyph based on context, first you need a  Single Substitution table to describe such 
changes, than you need a  Contextual Substitution to describe the context which the change should 
occur. Only that second table need to be associated to a feature.

5.3. Subtables
A lookup table actually only contains metadata about the transformations. The real description of 

how they should occur are placed under subtables.

The format of those subtables varies depending on the lookup, and you can check the documentation 
of FontForge to understand how the dialog works. I’ll focus in the ones that I actually used

5.4. Tables of Xiis
There are three transformations in Xiis: the half-box, the vowels and the final version. The first thing 

is to understand when such changes happen. The half-box version happens when a initial consonant is 
followed by two vowels. The vowels change positions when there are two in a syllable, the first is 
backed  a  little  and the  second  is  nudged forward.  The  final  version  occurs  when  a  consonant  is 
preceded by a vowel.

Note that's not how I would describe this if I were talking about the writing system itself. This is the 
sort of “programmer's talk” to be able to tell how the computer should look at those in a consistent  
manner.

5.4.1.Vowels

Let’s handle the vowels first. What I did was creating glyphs with the variations for first and second 
position and used a table to handle. It was also possible (though I didn’t knew how by that time) to 
create a positioning lookup table to nudge them.

First, create a new lookup table under Element > Font Info (Ctrl+Shift+F) > Lookups > Add Lookup 
and select the Single Substitution type. There’s no feature needed for this one. Name it (I used “First 
vowel” as a name) and click OK. Next, select it and click Add Subtable. You can use the default name.

That’s when suffixes come to use. Since I named all first versions with the same name plus a “first” 
suffix, it’s possible to use the  Default Using Suffix button. Just fill the field near it with “first” then 
click the button. The list will be filled automatically (though you may want to check if it’s all there, as 
you might have misspelled something). To understand this subtable, the first column is the original 
glyph, and the second column is the glyph which will take the place of the original. This table will not 
make any actual change in the way it is, because the lookup is not associated to any feature.



Then, make another lookup and subtable similar to 
these, but this time using “second” as suffix.

Now,  make  yet  another  lookup,  with  the  type 
Contextual  Substitution.  In  the  feature  column,  notice 
there’s a small rectangle after the word <New>. Click on 
it  and  a  list  of  features  will  show  up,  then  select 
Contextual Alternates. A “calt” feature will be added. In 
the  Scripts  &  Languages column  you  can  select  in 
which scripts this feature should be applied. “DFLT” is 
short  for  “default”  and  should  be  set  for  conscripts. 
Between the curly brackets is a list of languages to apply 
the feature. Usually, “dflt” (default) is enough. Click OK 
to  save  the  lookup  (I  used  the  name  “’calt’  Vowel 
places”, as is default to start the name with the feature it 
uses, though not required).

It’s  possible  to  use  a  Contextual  Chaining 
Substitution. The main difference to a  Contextual Substitution is that it separate the glyph(s) you’re 
going to change from its context. That lookup allows you to create three sections: before the glyph(s) 
(called  backtracking),  the  glyph(s)  and after  the  glyph(s)  (called  lookahead).  This  format  is  more 
general, and it’s only needed if you want the text processor to treat the changed part differently (which 
makes more sense in positioning tables).

Add a subtable to it and use the default name. A prompt then shows up, asking if you want to edit By 
Glyphs, By Classes or By Coverage. With the first, you have to define the context rule glyph by glyph. 
In the case of Xiis,  it  means adding every combination of vowels (and order matters).  If  you use 
classes, you can make lists of glyphs (which are called classes, hence the name) and create rules for a 
position that matches any of the glyphs inside such classes. The coverage format lets you create a 
separate list of glyphs for each of the glyph positions. The type of dialog can be Simple or Complex. I 
prefer the Simple format and you can do the same thing in both of them (the Complex format is just  
more verbose).

And by “positions” here I mean the positions of a glyph in a sequence of glyphs. In this case, I’m 
thinking in a sequence of vowels. This determine the context in which to apply the transformations. 
You make this context with rules. Each subtable can contain many rules, but, according to FontForge 
documentation, “OpenType interpreters do not seem to support multiple rules within a single subtable”. 
If needed, multiple subtables can be created.

Moving on, select By Classes and Simple (the default) and click on Next. First, we’ll define classes 
in the Match Classes section. A special class name “All_Other” is already there and cannot be deleted. 
It means “everything that is not defined in a class”, which can be useful in some sort of “everything 
except” rule.

Picture 3: New lookup table with ‘calt’ 
feature.



Click  on  <New>  under  the  name  column  and 
change the name to “vowel”. In the second column, 
put  all  the  glyphs  that  are  vowels  separated  by 
spaces. When you start typing, a list of possibilities 
will  show up. You can select it  with up and down 
arrow keys and use the right arrow key to insert the 
selected.

Then create a rule by clicking on <New> under 
Matching Rules section. Type “vowel” (it’ll probably 
auto-complete,  you  can  press  right  arrow  key  to 
accept it). Next, click on the Add Lookup button and 
select First vowel in the list, which is the first lookup 
table we made. Then type “vowel” again and add a 
lookup again, but this time select  Second vowel (or 
any name you gave to the second lookup table). The 
result will be similar to picture 4.

What  this  rule  means  is:  if  any  of  the  glyphs 
present in vowel class is followed by any the glyphs 
present in vowel class, apply the lookup First vowel 
to the first glyph and apply the lookup  Second vowel to the second glyph. Any space in the rule is 
ignored. If you want to match the space glyph, use its name (“space”), though in this case you would  
need to put it in a class.

5.4.1.a. Another approach for vowels

Since  the  only  difference  between  a  vowel  and  its  first and  second versions  is  the  horizontal 
position, it’s possible to avoid the creation of the extra repeated glyphs and, instead, use a positioning 
lookup table. I’ll describe this approach here.

First, create a GPOS lookup of the type Single Position. You may think of creating a Pair Position 
(kerning) in this case, because there is a pair of glyphs (two vowels), but that can only change the 
position of the second glyph and we want to change the position of both. So we make two lookups of 
the type Single Position, one for the first vowel and another for the second, with a single subtable for 
each of the lookups.

The first vowel must be backed by 150 units in the horizontal axis, so we change the Δx column to 
“-150” (notice it is negative, so it means 150 units to the left, since this is left-to-right writing system).  
In the Base Glyph Name column, add the name of the first vowel, then click in <New> as many times 
needed until all the vowels has its place. It’s good to change the position first, because the new lines  
will use that as default.

Picture 4: Contextual substitution subtable by 
classes.



For the subtable of the second lookup you do the same, only changing the Δx to “325”, which is the 
difference to a second vowel.

The only caveat here is that long vowels are placed naturally on the position where the first vowel  
would sit in diphthong. So, for them, the first  Δx would be “0” and the second would be “475”. It’s 
possible to not even list them in the first table, which can save some work.

After that, a Contextual Position lookup is needed, with the Horizontal Kerning (kern) feature. The 
approach here is the same as the Contextual Substitution, using a class of all the vowels and a rule like 

“vowel @<First vowel> vowel @<Second vowel>”.  This  position two consecutive  vowels 

according to the lookups we made before.

5.4.2.Half-boxes

The half-box version of an initial consonant should be used when it’s followed by two vowels. To do 

that, we need to specify such context, which would be consonant vowel vowel. However, I’ll use 

a neat trick to simplify that.

First things first, we need a lookup table that handle the substitution. So, create another lookup with 
the type Single Substitution and name it “Half box”. Add a subtable with the default name and use the 
Default Using Suffix with the “half” suffix. This will fill the table, and you can press OK.

Create  another  Contextual  Substitution lookup and add the  Contextual  Alternates (calt)  feature. 
Name it “’calt’ Half boxes” and click OK. Add a subtable to it with the default name.

Now comes the trick. Since every two vowels will be replaced by a first version and second version, 
instead of checking if there are two vowels after the consonant, the table can check if the consonant is  
followed by any first vowel. To do that, create a class with all the consonants (let’s call it “consonant”) 
and  another  with  all  the  vowels  with  the  suffix  “first”  (call  it  “first”).  Then,  add  a  rule  like:  

“consonant @<Half box> first”. This means: in any glyph in consonant class followed by any 

vowel in first class will be applied the Half box lookup. Which in this case means a consonant will be 
traded by its half version when followed by a first vowel (notice that this trick is not possible if you use 

the positioning approach for vowels, in such case you could use the consonant vowel vowel rule 

to match this case).

From that you can perceive two things. First,  you have to consider previous transformations. If 

you forget them, it’ll not work as intended. For example, if I type the combination “m a e”, which is a 

consonant followed by to vowels, I have to remember that they it will be changed to “m a.first 

e.second” and if I don’t explicitly specify those in the classes, it’ll not match. So the glyph “a” inside 

a class will not match “a.first” nor “a.second”. If you want those, you have to add them to the class.

Second,  the order of the lookups matter. If you put the “’calt’ Half boxes” lookup before the 
“’calt’ Vowel places”, this trick will not work, because it’ll be looking for a consonant followed by a 
first, and the vowel wasn’t yet changed to a first. You could use this order if you wanted to avoid the  



trick, so you could specify a single class of vowels and match “consonant vowel vowel”, without 

having to worry that they would became first and second, because that would only happen later.

5.4.3.Testing it

You probably wants to know if the thing is working 
as expected. That can be done by clicking on Window > 
New Metrics Window  (Ctrl+K). In the text field at the 
top you can type anything and it’ll be rendered in the 
middle of the window.

Info about the glyphs can be found at the bottom, so 
you can view that the glyphs are being really substituted. 
You can also select different scripts and languages in the 
left field.

The  New Lookup Subtable command here can only 
create positioning tables and not substitution ones.

5.4.4.Final consonants

The final consonants are variants of initial  ones (at 
least  for  typing).  They  change  to  final  form  when 
preceded by a vowel. This way, it’s not possible to type 
two finals in a row, and that’s what I want.

Following the same process, create a Single Substitution lookup called “To final”, add a subtable and 
fill it using the suffix “final”. Then add a Contextual Substitution lookup and a subtable to it.

The thing to remember when defining the classes is that the vowels may be in their second version, 
so you have to add them to the list (it’s not possible that they are in the  first form, because it only 
happens  when  they are  followed  directly  by  another  vowel,  so  there  wouldn’t  be  any  consonant 
between the two).

So, there’s a class of “finals” and another for “vowels” (which include the seconds). And the rule is 

“vowels  finals  @<To  final>”.  This  means  final  that  it’s  preceded  by  a  vowel  will  be 

transformed according to the “To final” lookup.

And that completes everything.

6. Exporting
First, it’s good to validate the font and see if there are any problems. FontForge can still export the 

font  if  any of such problems occurs,  but it  can also fix some of them if  you want,  like “Missing 

Picture 5: Metrics for “m a e” sequence.



Extrema” and “Non-integral Coordinates”. Some of the errors go away if you fix others.

To do that, click on Element > Validation > Validate. A dialog showing all the errors will appear and 
if you double click in one of them the glyph will open and a message will show up explaining the error. 
It’s possible that such message box has a Fix button, which fix it and move to the next error.

FontForge saves the files in its own format (.sfd). To generate a font file that can be installed, click 
File > Generate Fonts (Ctrl+Shift+G). There you can select the format (there are plenty) and the place 
and name to save it. The most common formats would be OpenType (CFF) and TrueType, as both of 
these support the lookup tables and works on most platforms.

7. Other Approaches

7.1. Composition
One  possibility  for  Xiis  that  I  considered  is  to  pre-compose  all  possible  syllables  and  create 

substitution tables for the sequences.  While this  task may seem daunting,  I could do with a script  
program. FontForge accepts scripts in its own language and also in Python. If you are a programmer 
like me, this is a possibility not-so-daunting.

For that, a  Ligature Substitution lookup may be used. This kind of lookup replaces a sequence of 
glyphs  with  a  single  glyph.  It’s  called  that  by the  Latin  ligatures  (like  “fi”).  Instead  of  using  the 
Standard Ligatures (liga) feature, in this case it’s proper to use the Glyph Composition / Decomposition  
(ccmp).

If this interests you, the FontForge website has the API documentation to the scripting library both 
in Python and in its own language.

Note that I gave up on that approach for Xiis. While possible, there’s so many combinations for 
compositions that the font file ended up many times larger than the original. Just note that you can mix  
compositions with the lookup tables magic that I described in this article (Hangul fonts seems to do a 
bit of that too).

7.2. Graphite
Graphite is a system made specially to deal with complexities of lesser-known languages. It was 

created by the Summer Institute of Linguistics (which also provides many other linguistic related tools 
that can be used in the conlanging universe). You can’t design the glyphs of a font with it—that should 
be made elsewhere—only the extra features can be made, like position and substitution.

There are two main problems with Graphite: it is supported only by a handful of programs (while 
OpenType is widely supported) and it requires to be written like a programming language, which might 
not  be for everyone (though it  is  somewhat  simple to understand,  at  least  not  harder  than lookup 
subtables and features).

http://www.sil.org/
http://scripts.sil.org/cms/scripts/page.php?site_id=projects&item_id=graphite_home
http://fontforge.org/


The rules in Graphite are made in a different way than OpenType lookup tables. It makes them more 
general and a little simpler, while still allowing powerful possibilities.

Depending  of  your  affinity  with  a  programming  language  and  the  complexity  of  your  writing 
system, it might be even easier to follow this approach instead of the lookup tables. And notice that the 
two systems cannot be used together, because the graphite compiler wipe the tables of the font and I’m 
sure the same occurs in the opposite direction.

7.3. Anchors
While substitution and kerning worked fine for Xiis, other systems might want to make use of mark 

positioning. This is probably the best way for diacritics combinations and abujidas.

The general idea is that you place an anchor on the base character, another anchor of the same class 
in the diacritic and when combined that anchors will be put together like a pin. This way you can have 
many base glyphs and many diacritics  without  having to  create  a lot  of  alternate  glyphs with the 
combinations.

A  general  step-by-step  tutorial  on  how  to  do  that  is  described  in  the  following  link: 
https://github.com/fontforge/fontforge/wiki/How-To-Create-Anchors.

8. Final Thoughts
These advanced typographical topics are really hard to learn and there little documentation about 

these. It’s already hard to find a cheap program to make a simple font, much more to a complex one.  
Luckily, FontForge is there and works well.

If your budget is large, other applications may be used to design the font with all the features, like 
Fontographer and  Glyphs (the latter is for Mac only). They have an easier approach on the lookup 
tables, as far as I know.

Anyway,  this  was  really  longer  than  I  wanted,  but  I  hope  people  can  understand  the  general  
procedure to make the lookups and features. It’s hard to make a one-fits-all kind of tutorial and there 
are many possibilities I didn’t tested myself. For me, it was hard to understand how it worked but once 
I did, the rest was easy. If you can also understand that, I’m sure you can do pretty much anything you  
want (just please don’t come here talking about non-linear writing systems).

http://www.glyphsapp.com/
http://www.fontlab.com/font-editor/fontographer/
https://github.com/fontforge/fontforge/wiki/How-To-Create-Anchors

	1. Introduction
	2. Software
	3. Designing Glyphs
	4. Importing Glyphs
	4.1. Create a new font
	4.2. About encoding and character sets
	4.3. Importing glyphs
	4.3.1. Zero-width characters
	4.3.2. References
	4.3.3. About suffixes


	5. Lookup Tables
	5.1. Features
	5.2. Lookup tables
	5.3. Subtables
	5.4. Tables of Xiis
	5.4.1. Vowels
	5.4.1.a. Another approach for vowels

	5.4.2. Half-boxes
	5.4.3. Testing it
	5.4.4. Final consonants


	6. Exporting
	7. Other Approaches
	7.1. Composition
	7.2. Graphite
	7.3. Anchors

	8. Final Thoughts

